
SCANF 1
ID: 816-BSI | Version: 3 | Date: 5/16/08 2:39:33 PM

SCANF
Very susceptible to buffer overflow

Sean Barnum, Cigital, Inc. [vita1]

Copyright © 2007 Cigital, Inc.

2007-04-04

Part "Original Cigital Coding Rule in XML"
Mime-type: text/xml, size: 8312 bytes

Attack Category • Malicious Input

Vulnerability Category • Buffer Overflow

• Format string

• Unconditional

Software Context • String Parsing

Location • stdio.h

Description The scanf family of functions scans input according
to a format as described below. This format may
contain conversion specifiers; the results from such
conversions, if any, are stored through the pointer
arguments. The scanf function reads input from the
standard input stream stdin, fscanf reads input from
the stream pointer stream, and sscanf reads its input
from the character string pointed to by str.

The vulnerability of the scanf() function resides in
the fact that it has no bounds checking capability.
If the string that is being accepted is longer than
the buffer size, the characters will overflow into the
adjoining memory space. This is a classic buffer
overflow security vulnerability problem.

The scanf() function is susceptible to buffer
overflow.

APIs Function Name Comments

_cscanf fmt: 0; dst: 1 variable;
Windows

_ftscanf fmt: 1; dst: 2 variable;
Windows

_stscanf fmt: 1; dst: 2
variable;Windows

_tscanf fmt: 0; dst: 1 variable;
Windows

fscanf fmt: 1; dst: 2 variable;

1. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/35-BSI.html (Barnum, Sean)

http://buildsecurityin.us-cert.gov/bsi/about_us/authors/35-BSI.html

SCANF 2
ID: 816-BSI | Version: 3 | Date: 5/16/08 2:39:33 PM

ftscanf fmt: 1; dst: 2 variable;
Windows

fwscanf fmt: 1; dst: 2 variable;
Windows

scanf fmt: 0; dst: 1 variable;

sscanf fmt: 1; dst: 2 variable;

swscanf fmt: 1; dst: 2
variable;Windows

vfscanf fmt: 1; dst: 2 variable;

vftscanf fmt: 1; dst: 2 variable;
Windows

vscanf fmt: 0; dst: 1 variable;

vsscanf fmt: 1; dst: 2 variable;

wscanf fmt: 0; dst: 1 variable;
Windows

Method of Attack Attacker can overflow destination buffers of scanf()
family with large input. Any "%s" in the format
string leaves potential for this.

Exception Criteria

Solutions Solution
Applicability

Solution
Description

Solution
Efficacy

All calls to
scanf()

If you use
the %s and
%[conversions
improperly,
the number of
characters read
is limited only
by where the
next whitespace
character
appears. This
almost certainly
means that
invalid input
could make
your program
crash, because
input too long
would overflow
whatever
buffer you have
provided for it.
No matter how
long your buffer
is, a user could
always supply

Effective

SCANF 3
ID: 816-BSI | Version: 3 | Date: 5/16/08 2:39:33 PM

input that is
longer.

Fortunately,
it is possible
to avoid scanf
buffer overflow
by either
specifying a
field width or
using a flag.

When you
specify a
field width,
you need to
provide a buffer
(using malloc
or a similar
function) of
type char *.
(See Memory
Allocation
for more
information on
malloc.) You
need to make
sure that the
field width you
specify does
not exceed the
number of bytes
allocated to
your buffer.

In GNU
environments

On the other
hand, you
do not need
to allocate a
buffer if you
specify the flag
character --;
scanf will do it
for you. Simply
pass scanf a
pointer to an
unallocated
variable of
type char *,
and scanf
will allocate
however large
a buffer the
string requires
and return the

Effective

SCANF 4
ID: 816-BSI | Version: 3 | Date: 5/16/08 2:39:33 PM

result in your
argument. This
is a GNU-
only extension
to scanf
functionality.

Signature Details #include <stdio.h>
int scanf(const char *format, ...);
int fscanf(FILE *stream, const char *format, ...);
int sscanf(const char *str, const char *format, ...);

#include <stdarg.h>
int vscanf(const char *format, va_list ap);
int vsscanf(const char *str, const char *format,
va_list ap);
int vfscanf(FILE *stream, const char *format, va_list
ap);

Examples of Incorrect Code int main()
{
char buff[15]={0};
printf(“Enter your name:”);
scanf(buff,”%s”);
}

In this example, the program reads a string from
the standard input but does not check the string's
length. If the string has more than 14 characters, it
causes a buffer overflow as scanf() tries to write the
remaining character past buff’s end.

Examples of Corrected Code Here is a code example that shows first how to
safely read a string of fixed maximum length by
allocating a buffer and specifying a field width,
then how to safely read a string of any length by
using the flag.

#include <stdio.h>

int main()
{
int bytes_read;
int nbytes = 100;
char *string1, *string2;

string1 = (char *) malloc (25);

puts ("Please enter a string of 20
characters or fewer.");
scanf ("%20s", string1);
printf ("\nYou typed the
following string:\n%s\n\n",
string1);

puts ("Now enter a string of any
length.");
scanf ("%as", &string2);

SCANF 5
ID: 816-BSI | Version: 3 | Date: 5/16/08 2:39:33 PM

printf ("\nYou typed the
following string:\n%s\n", string2);

return 0;
}

Source References • Viega, John & McGraw, Gary. Building Secure
Software: How to Avoid Security Problems
the Right Way. Boston, MA: Addison-Wesley
Professional, 2001, ISBN: 020172152X, p. 146.

• UNIX man page for scanf()

• The GNU C programming tutorial2

Recommended Resource

Discriminant Set Operating Systems • Windows

• UNIX

Languages • C

• C++

Cigital, Inc. Copyright
Copyright © Cigital, Inc. 2005-2007. Cigital retains copyrights to this material.

Permission to reproduce this document and to prepare derivative works from this document for internal use
is granted, provided the copyright and “No Warranty” statements are included with all reproductions and
derivative works.

For information regarding external or commercial use of copyrighted materials owned by Cigital, including

information about “Fair Use,” contact Cigital at copyright@cigital.com1.

The Build Security In (BSI) portal is sponsored by the U.S. Department of Homeland Security (DHS),
National Cyber Security Division. The Software Engineering Institute (SEI) develops and operates BSI. DHS
funding supports the publishing of all site content.

1. mailto:copyright@cigital.com

http://crasseux.com/books/ctutorial/String-overflows-with-scanf.html
mailto:copyright@cigital.com

